Flatlet Oblique Multiwavelet for Solving Integro-differential Equations

نویسندگان

  • M. R. Ahmadi Darani
  • R. Saadati
چکیده

In this paper we construct a flatlet biorthogonal multiwavelets System. Then, we use this system for numerical solution of Integro-differential equations. The good properties of this system, i.e., biorthogonality and more vanishing moments lead to efficient and accurate solutions. Some test problems with known solutions are presented and the numerical results are given to show the efficiency of the proposed technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations

The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...

متن کامل

The Petrov-Galerkin Method and Chebyshev Multiwavelet Basis for Solving Integro-Differential Equations

 Abstract: There are some methods for solving integro-differential equations. In this work, we solve the general-order Feredholm integro-differential equations. The Petrov-Galerkin method by considering Chebyshev multiwavelet basis is used. By using the orthonormality property of basis elements in discretizing the equation, we can reduce an equation to a linear system with small dimension. For ...

متن کامل

USING PG ELEMENTS FOR SOLVING FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

In this paper, we use Petrov-Galerkin elements such as continuous and discontinuous Lagrange-type k-0 elements and Hermite-type 3-1 elements to find an approximate solution for linear Fredholm integro-differential equations on $[0,1]$. Also we show the efficiency of this method by some numerical examples  

متن کامل

The Legendre Wavelet Method for Solving Singular Integro-differential Equations

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

متن کامل

Variational iteration method for solving nth-order fuzzy integro-differential equations

In this paper, the variational iteration method for solving nth-order fuzzy integro differential equations (nth-FIDE) is proposed. In fact the problem is changed to the system of ordinary fuzzy integro-differential equations and then fuzzy solution of nth-FIDE is obtained. Some examples show the efficiency of the proposed method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009